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Abstract-Heat transfer calculations based on the fluctuating viscous sublayer model of turbulent flow 
are presented which incorporate two essential but heretofore neglected features of the real flow situation; 
namely, that the sublayer fluctuuions impose wall temperature fluctuations and that on average the 
sublayer does not decay completely to the wall but rather there exists a maximum turbulence penetration 
thickness. The resulting temperature distributions and heat transfer coefficients are in agreement with 
empirical correlations of the experimental data for Prandtl numbers greater than one. Heat transfer to 
liquid metals is also considered (Prandtl number much less th,m one) and computed heat transfer coefti- 
cients are 25-50 per cent higher than published correlations of empirical data. The computations indicate 

that for liquid metals the Nusselt number is not a single valued function of the PeclCt number. 

NOMENCLATURE 

heat capacity of fluid ; 
tube diameter; 

97 arbitrary function; 
h, local heat transfer coefficient based on 

bulk fluid temperature; 
k, thermal conductivity of fluid; k, thermal 

conductivity by a turbulent mechanism; 
n, an integer; 
NNu, local Nusselt number, hD/k; 

N pe, PC&t number, N,,N,,; 
N pI, Prandtl number, cp/k; 
N Re, Reynolds number, D(u,)/v; 

NW Stanton number, N,,JN,,N,,; 

43 heat flux; &,,, time averaged heat flux at 
the wall; 

R tube radius, R’ = RuJv; 

4 time, t + = u*(~/v)“~; 

7; sublayergrowtb period; T + = u,( T/v)Q ; 

4 velocity ( uz), bulk velocity in axial direc- 
tion; uB, velocity at outer edge of 
growing sublayer; z?, time average velo- 
city; u*, friction velocity, (7,/p)+; u+ 
= u/u* ; 

* Bell Telephone Laboratories, Murray Hill, N.J., U.S.A. 

x,y,z, rectangular Cartesian coordinates rela- 
tive to-a point on the wall in the trans- 
verse, normal, and axial direction of a 
tube respectively; y + = yu,/v; 
thermal diffusivity of fluid, k/pc; as, 
thermal diffusivity of wall material; cct, 
eddy diffusivity for energy transport; 
thermal responsivity of fluid, (kpc)*; 

rs thermal responsivity of wall material; 
sublayer thickness; 6’ = 6u,/v; 6,, 
maximum thickness of sublayer growth; 
6,, minimum sublayer decay thickness; 
&., thermal boundary layer thickness; 
an infinitesimal; 
temperature; 8, constant temperature 
at outer edge of thermal sublayer; (O), 
bulk fluid temperature; 8, time averaged 
wall temperature; 19+, dimensionless 
temperature, (0 - B,)pcu&,; WW, wall 
temperature fluctuation; 
first constant from mixing length 
theory s 0.4; 
viscosity; 
kinematic viscosity; vt, eddy diffusivity 
for momentum transport; 
density: 
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momentum flux (or shear stress); ?,, 
time averaged momentum flux at the 
wall. 

INTRODUCTION 

SOLUTION of turbulent transport problems is 
frustrated by our inability to adequately de- 
scribe the turbulent flow itself. Thus, while there 
are many semi-theoretical and empirical correla- 
tions of the experimental data for a number of 
common situations, prediction of coefficients in 
new situations or for combined transport is 
often hazardous. Some years ago, Einstein and 
Li [l] proposed a periodic model of the viscous 
sublayer. This model is of considerable intuitive 
appeal and fits well with visual observations of 
penetration of the wall region by turbulent 
fluctuations [2-81. While such a highly simpli- 
fied model cannot adequately describe essen- 
tially turbulent quantities such as the velocity 
fluctuations or the eddy diffusivity near the wall, 
it does allow solution of turbulent transport 
problems since said transport is assumed to 
occur under essentially viscous flow situations 
for which the governing differential equations 
and coefficients are well known. 

Recently the periodic viscous sublayer model 
has been developed in detail and validating 
experimental evidence has been presented [9-l 11. 
In the present paper heat-transfer coefficients 
for turbulently flowing fluids are calculated. 
After briefly describing the model we first make 
heat transfer calculations for N,, > 1 fluids in 
turbulent pipe flow based on simple boundary 
conditions and then discuss the case of liquid 
metals (Np, - O-01). Finally we present numeri- 
cally calculated heat-transfer coefficients taking 
into account wall properties and a finite 
minimum turbulence penetration thickness. 

THE VISCOUS SUBLAYER MODEL 

The principal features of the intermittent or 
partial turbulence model are as follows: 

1. At any time, the surfaces bounding a turbulent 
shear-flow field are covered with patches 

2. 

3. 

4. 

5. 

(sublayer elements) 
flow. 
The velocity, llg, at 

in unsteady-state viscous 

the outer edge of a given 
patch is essentially constant, and the growth 
in thickness of the element in time is treated 
as a semi-infinite boundary layer-type pheno- 
menon. 
The thickness of a patch, (5, increases with 
time until a viscous-turbulent transition takes 
place when ii = S,. The element then breaks 
up into a turbulent hash and mixes with the 
turbulent core. 
The patch is replaced, essentially instanta- 
neously, with another developing patch. The 
Einstein-Li assumption was that the develop- 
ment at the wall started from zero thickness. 
The physically more plausible assumption 
of decay to a fixed minimum thickness, (5,, is 
introduced here. 
The outer bounding velocity of a sublayer 
element, uB, is determined in a self-consistent 
manner by continuity requirements. Einstein 
and Li arbitrarily assumed the bounding 
velocity to correspond to the velocity at a 
fixed distance from the wall. Mixing length 
theory is assumed to apply in the turbulent 
core. 
lf the transition criterion of the viscous sub- 

layer element were known, the parameters 
arising in the model-such as the growth period 
and the maximum sublayer thickness--could, 
in principle, be calculated directly from a know- 
ledge only of the velocity distribution in the fully 
turbulent core. Such a criterion is not available, 
and one experimental relationship-the Prandtl 
correlation for the friction factor as a function 
of the Reynolds number--was introduced to 
permit completion of the model [9, lo]. It is 
further assumed that a mean growth and decay 
period can be defined which is representative of 
this random process. 

A mean dimensionless sublayer growth period, 
T + = u.(T/~)* can be calculated [9, lo] based 
upon this model. Here 7‘ is the actual growth 
and decay period. For Reynolds numbers 
greater than 104, T+ is substantially constant 
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and equals 18. Experimental, average-growth- 
period data supporting the calculations are 
presented elsewhere [9-l 11. 

We also note here that, based on the same 
physical picture as is the Einstein-Li [l] model, 
Black [12, 131 has proposed a theory in which 
wall turbulence is viewed as an organized, 
time-dependent, viscosity governed, primary 
motion which becomes unstable and breaks 
down periodically in space and time to generate 
and maintain a system of characteristic horse- 
shoe vortex structures which are intimately 
coupled to the temporal and spatial behavior 
of the sublayer. By making a number of assump- 
tions [12] Black’s model simplifies to the 
Einstein-Li case so that it may be thought of as 
a limiting case of Black’s more complex, and 
more realistic, theory. Two of the principal 
defects of the simple model are that the sublayer 
thickness does not arise naturally but is treated 
in the “boundary-layer” formalism and that the 
transition criterion is unknown. It is hoped that 
the more complex model of Black will be of aid 
in this regard. In point of fact, however, the 
present version of the model is extremely 
successful in predicting heat and mass transport 
if the momentum transport (that is the friction 
factor) is known. 

HEAT TRANSFER WITH SIMPLE BOUNDARY 
CONDITIONS 

Heat transfer coefficients, Np, > 1 
When it is assumed that the thermal conducti- 

vity is constant, that the axial and transverse 
temperature variations are negligible, that the 
viscous dissipation is negligible, and that the 
problem can be adequately described in car- 
tesian coordinates, (sublayer thickness much 
less than pine radius) then the equation of 
energy [14] becomes 

ae a28 
z=aay” (1) 

For the present, semi-infinite boundary con- 
ditions and turbulent penetration completely to 
the wall during the decav orocess will be assumed. 

Then the initial condition is 

t = 0: y > 0, e = 8, (2) 
and the first boundary condition on the tem- 
perature is 

t = oty -+ 00, e = ei, (3) 

where ei is a “boundary-layer” temperature 
analogous to the bounding velocity at the outer 
edge of the sublayer and is to he determined in 
a self-consistent manner. Two wall conditions 
are of interest, namely constant wall tempera- 
ture and constant wall flux. The solution to (2) 
with (3) and (4) is well known in either case [15]. 

In the turbulent core, only time averaged 
quantities are considered and mixing length 
theory is applied. The temperature distribution 
in the core, suitably matched to the average 
sublayer temperature distribution is [9] 

8= -gK1n $ +ei,Np,> 1 
- 0 

(4) 
* M 

where rc = 04. 
A local heat transfer coefficient defined by 

4, = NJ, - (6) (5) 

may now be calculated. The results [9] are 
plotted in Fig. 1. First, it is comforting to note 
that there is no really significant difference 
between the results obtained for the Stanton 

-2 
IO , I 

FIG. 1. Comparison of local Stanton numbers calculated 
from simde boundarv conditions with Deissler’s correlation. 
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number from the two different boundary con- 
ditions. However, from comparison with 
Deissler’s correlation [16], it is seen that the 

calculated values are substantially in error for 
N,, > 10. 

A discrepancy might have been anticipated. 
In the first place neither the constant wall 
temperature nor constant flux can correspond 
to reality, since the sublayer oscillations impose 
a wall temperature fluctuation and the wall 
temperature and heat transfer problems must 
be solved simultaneously. Secondly, the turbu- 

lent fluctuations almost certainly do not pene- 
trate completely to the wall but to only a 

minimum thickness value, 6,. Both these features 
are taken into account in a numerical method 
of solution to be presented later in this paper. 
These simple solutions are, however, of interest 
and use for moderate values of the Prandtl 

number. 
In developing the viscous sublayer flow model, 

the sublayer thickness was defined as the point 
where the velocity becomes 99 per cent of the 

bounding velocity us [9, lo]. For the error 
function velocity profile this led to [9, IO] 

6 = 3.64(vt)’ (6) 

and to a value for SL = 65 for the maximum 

thickness at t = T when T ’ = 18. 
By analogy to the sublayer thickness, a 

thermal thickness, 6,, is defined such that 

0(0, t) - U(hT, t) = 0.99(&O, t) - Qi). 

For constant wall flux this leads to 

6, = c&t)+ (7) 

where cT = 3.20 or 364 for the constant flux 
or constant wall temperature cases respectively. 

For Prandtl numbers greater than one, the 
thermal thickness is less than the sublayer 
thickness, so that treating the heat transfer 
problem in the boundary layer formalism with 
6 -+ Bi as y + m is satisfactory. 

Liquid metals, N,, < 1 
For Prandtl numbers less than one, the thermal 

thickness is greater than the sublayer thickness. 
Two difticulties must be considered. The first 
concerns the applicability of the initial condition 

and the second the accuracy of the computed 
flux. If the initial condition, equation (2). is to 

apply we must introduce the additional assump- 

tion that during the (assumed negligibly short) 
sublayer breakup time. the eddy thermal dif- 
fusivity is much greater than the molecular 
thermal diffusivity so that the sublayer fluid 
is mixed thoroughly into the turbulent core. In 
the liquid metal case this is not a very plausible 
assumption but is necessary in order to apply 
this model in this case. Calculations are made 

and a comparison to experimental data is 
presented to determine the validity of this 
approach in the low Prandtl number situation. 

When the thermal wave extends beyond the 
growing viscous sublayer. the heat transfer in 

the turbulent region, 6 < V. must be considered. 
Since the eddy thermal diffusivity in this region 
is position (and likely time) dependent, an 
analytical evaluation of this effect can only be 
made in terms of average properties of the trans- 
port coefficients in this region. In the following, 
the turbulent eddy transport coefficients, 2, and 
I’~, were evaluated at the time average value of 
the thermal wave thickness, i.c. $ of the thickness, 
SG , given by equation (7) in dimensionless I; )rm 
at “7‘“. The value of the eddy diffusivity fclr 
momentum transport, \;. ,was obtained at this 
thickness from the Reichart relationship [ 17.1 
and the ratio cx,/\; from the Jenkins’ calculation 
[ 181 was used to evaluate x,. 

If an essentially constant value for z(t is 
adequate for y > 6, the heat flux at the wall, yK. 
for constant 0, is obtained by solution of the 
one dimensional transient heat conduction 
equation in the regions 0 < _V < (s(t) with molecu- 

lar transport coefficients and s(t) < y + <. L 
with the sum of the molecular and turbulent 
coefficients. The pc product would be the same 
in both regions. Since the boundary d(t) increases 
with time, this problem is similar to the SO called 
classical Stefan-Neumann or “ice formation” 
problem. In the present problem the functional 
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dependence of S(t) is known, equation (6), and 
the temperature distribution can be obtained 
by a combination of variables as was done by 
Ruoff [19] for the ice melting problem. If q. is 
the heat flux computed for molecular properties 
extending to y -+ co, which is the case obtained 
from the periodic model, the ratio 

4w 1 

-= erf{, + /3erfc12 40 
(8) 

can be obtained. Here, t1 = l-82 (N,)%, 
t2 = 1.82 &(N#‘, /3 = R, exp (95 - <I), and 

Equation (8) predicts no effect of the thermal 
wave penetration beyond 6 for N,, + 0 because 
the turbulent mechanism would be dominated 
by-molecular conduction and also no effect for 
Np, -+ 1 since the thermal wave penetration 
would be negligible. For typical values of aJa 
the maximum effect occurs at N,, z O-04. For 
Np, = 0$)05, which corresponds to the alkali 
metal liquids, thermal wave penetration at T is 
great enough that the average value of v,/v z 200 
and the Jenkins’ correction a& z 0.17. For 
N,, = O-03, which corresponds to a heavy 
metal such as mercury, the average value of 
v,/v z 100 and a,/q 2 0.35. In each case and 
over the range of Prandtl numbers of interest, it 
is found that R, E 1/(35Np, + 1). At N,, =0*005, 
q,,, is within 10 per cent of qo, and to an adequate 
approximation the effect of the heat flow in the 
two types of regions may be neglected. For 
N,, = 0.03, 4, z l-254, and a significant cor- 
rection for the high conductivity region 6 
must be considered. 

Quantitative evaluation of heat transfer co- 
efflcients will be delayed to the section on 
numerical calculation. However, it is noted 
here that the velocity and temperature profiles 
are needed in the turbulent core for the evalua- 
tion of (0) and hence the heat transfer coefficient. 
In the case of the large Prandtl number fluids, 

equation (4) was used for temperature and 

u, = kin $ + 0.99 us 
0 

(9) 
u M 

was used for velocity [9, lo]. The latter is also 
used for the liquid metal case as is justified by 
experiment [20]. 

However, equation (4) does not apply as is 
made amply clear in the preceding argument 
concerning x,/a. Rather both molecular and 
turbulent transport must be considered in the 
core. Furthermore, it was seen that the sublayer 
temperature oscillations extend into the core. 
(This should be experimentally observable.) 
Therefore, in the region 6, < y < 6, no truly 
rational method exists for computing the tem- 
perature profile within the framework of the 
simplified model. In particular we will introduce 
a second additional assumption that outside 
the sublayer, y < 6,, it is satisfactory to use a 
time averaged temperature profile matched to 
@,) at y = &. That is 

Y+ 

B = e(s,) - 4, 
PCU* ! 

“:I 

N,, < 1. 

Mixing length theory is used for the turbulent 
transport contribution and axial transport is 
neglected as was done in deriving equation (4). 
The further implication of this will be discussed 
later. 

Temperature profiles 
It is of interest to compare not only heat- 

transfer coefficients but also temperature profiles 
with experiment. For moderate and low Prandtl 
numbers the analytical solutions give satisfactory 
results. A dimensionless temperature is defined 

by 

B -8 

F=Y pcu*. 
w 

(11) 
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Equation (4) which applies in the core and the 
analytical expressions for the mean temperatures 
in the sublayer may be integrated analytically, 
by successive integrations by parts. The results 
are 

0” = -%Yf2 
pexp (-y+2Np,/4T+2) 

- y+N,+ erfc (y+Njr/2T+) 

Yi3-NP, 
- -erfc (y+Nir/2T+) 

6Tf2 

4N&T+ 
~ 

+ 3rtf 
exp(-y+2N,r/4TC2) - 1 , 

q, = const. 

and 

8+= 
rc%~pf, 
7Ti erf(Y+N$2T+) 

N,,Y + ~ Pexp(-y+2N,,,i4Ti2) 
2 

(12) 

+N$,y + 2 - 
4T+ 

erfc (y’N,f,/2T+), 8, = const. (13) 

These results depend on the Reynolds number 
only through T+ which is substantially constant 
for N,, > 104. Furthermore, the profiles from 
(12) and (13) do not differ appreciably. Com- 
parison to experimental data [20, 22-241 is 

made in Fig. 2 where the magnitude of the 
maximum sublayer thickness and the maximum 
thermal thickness are also indicated. The agree- 
ment is adequate. Thomas [21] has discussed 
temperature profiles from the periodic viscous 
sublayer viewpoint, although he prefers to 
speak in surface renewal terminology. Thomas 
[21] however, used an empirical surface age 
distribution and took uB = (u) which is not 
consistent with continuity requirements [9, lo]. 

A restriction upon the Reynolds number 
range which it is strictly legitimate to consider 
now becomes apparent. For a given value of 
N, there is a minimum value of R+ for meaning- 
ful results, since these calculations have ‘been 

1” 

FIG. 2 Calculated dimensionless temperature as a function 
of dimensionless distance from the wall for comparison 
with experimental data at various fluid Prandtl numbers. 
Data for water are from [22], for air are from [23, 241 and 

for mercury are from [20]. 

set up in Cartesian coordinates. RS must be 
significantly greater than 6’. If 8; = 65, the 
Fanning friction factor is about 0.0045, and R ’ 
is taken as twice S&, itisfoundthatN,,k5.5(103) 
NA [9, lo]. A similar requirement is needed 
because of neglect of axial transport. Experi- 
mental data indicate lack of dependence on the 
axial boundary condition only for NPeZ 100 [25]. 

NUMERICAL SOLUTION OF THE HEAT I\ \LL 

PROBLEM 

As was mentioned above, the simple solutions 
presented thus far neglect two important physical 
phenomena. First, since sublayer oscillations 
impose wall temperature fluctuations, the tem- 
perature distribution in wall and sublayer must 
be solved simultaneously. Second, during transi- 
tion of the sublayer element, turbulent fluctua- 
tions do not penetrate completely to the wall 
but rather only to some minimum sublayer 
thickness 8,. (The data of Popovich and Hummel 
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[5] indicate that 8: = 1.6 Ifr 04.) It has been 
shown [9, 101 that introduction of such a 
minimum thickness is very important in heat- 
transfer determinations at large Prandtl numbers 
where a significant portion of the temperature 
drop may occur for y < 6,; that is where 6, 
becomes of the order of or less than 6,. 

The numerical method 
If a wall which is transferring heat to a fluctuat- 

ing viscous sublayer is so thick that significant 
fluctuations in temperature do not penetrate it, 
a convenient mathematical description of the 
heat-transfer process may be formulated as 
follows : 

For y < 0 (into the wall), the differential 
equation is the same as equation (1). Since the 
sublayer oscillations have average period T, it 
is clear that the solution desired in this caSe is 
such that 

Hy, t + T) = &y, T). 

The initial starting solution necessary 
to be 

t=O:y<O,$= -cj,y+8,, 

(14) 

is taken 

(15) 

where &, is estimated in a manner to be described 
shortly. The boundary condition on the wall is 

allt:y +no,-k,~=qwdz(B,,,- <@)(W 

where the final identity introduces the heat- 
transfer coefficient, h. 

For y 2 0 (in the fluid), equation (1) still 
applies. The initial and boundary conditions 
for the fluid may be written as 

t = nT:ally > 6,,0 = Bi; (17) 

and 

t>O:y+al,e=8i. (W 

For y = 0 (at the solid-fluid interface), con- 
tinuity of temperature and flux gives 

e( - E, t) = @.E, t) (19) 

and 

k,;(-e, t) = kg@, t). (20) 

Calculations are begun by use of equation (15); 
as n-the number of times the sublayer grows 
and decays-becomes large, the calculated 
temperature oscillations converge to steady 
periodic values and thus wall temperature 
fluctuations and average heat-transfer coef- 
ficients which can be compared with experiments 
are calculated. 

Before the method of solution is detailed, it is 
advantageous to perform a simple dimensional 
analysis [9]. The result is 

and 

It is expected, from knowledge of experiments, 
that the effects of (a/olJ and (r/rJ on N,, are 
small while, intuitively, it seems possible that 
their effects on the relative RMS wall tempera- 
ture fluctuation may be significant. These 
allegations are borne out by the results of 
calculations for various wall and fluid proper- 
ties [9]. 

For the numerical solution, the equations 
were rewritten in terms of dimensionless vari- 
ables by combination with the solid thermal 
properties, with the period, and with an esti- 
mated mean interface-to-fluid temperature 
difference. The mean heat flux and this tempera- 
ture difference were calculated from an estimated 
heat-transfer coefficient. If the estimated coeffi- 
cient was exact, the time-averaged surface 
temperature from a calculation was 1.0; other- 
wise, the interface value approached some value 
near to the one as the number of simulated 
cycles was increased. 

The period, T, can be calculated from the 
fluid properties if T+ and (u:) are known. 
The values of these dimensionless variables 
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[IS, lo] have been calculated and can be rep- 
resented adequately by 

T+ = y-l + 17.6, (23) 
where 
y = O-6 In N Re - 0.00965 (In N,,)’ - 3.78, (24) 

and by 

(a:) = 1.84 In N,, + 0.0158 (In N,,)’ - 2.18. 

(25) 
The semi-infinite boundary conditions were 

approximated for the numerical solution by 
specification of the conditions at some distance 
from the interface. For the solid, the constant 
mean heat flux was imposed at a distance at 
which the temperature fluctuation would be less 
than one per cent of sinusoidal surface-tempera- 
ture fluctuations at a frequency corresponding 
to the growth period. For the fluid, the dimen- 
sionless temperature was set equal to zero at 
such a distance that the temperature change 
during a single period would be less than ten 
per cent of the surface-temperature change. The 
continuity conditions at the interface were 
satisfied by use of fictitious temperatures on 
either side of the interface. 

The differential equations were put into the 
form of the Crank-Nicholson six-point implicit 
representation [26] for the numerical calcula- 
tions. Since this representation yields a tri- 
diagonal matrix for general interior points, the 
finite difference equations from the boundary 
condition approximations were also placed in 
tridiagonal form: and the temperature distribu- 
tions within the solid and the fluid were calcu- 
lated for successive increments by inversion of 
the tridiagonal matrix by the method of Thomas 

P61. 
The numerical solution was checked against 

the analytical solutions which can be developed 
for the first growth period, and the maximum 
difference between calculated temperature pro- 
files was less than one per cent. No significant 
changes in the solution were obtained when the 
spatial or time increments were changed by 
factors of ten nor when double-precision calcu- 

lations were made. Normally, after 20 simulated 
periods, the calculated relative RMS tempera- 
ture fluctuations were varying less than & per 
cent per period. Fast convergence to a steady- 
state heat-transfer coefficient was achieved 
when the solution was restarted after 10 periods 
with this numerically determined coefficient 
used as the estimate for the starting solution. 

Input data to the program were the Reynolds 
number, the tube diameter, and the thermal 
properties of the wall and fluid, while the output 
includes the Nusselt or Stanton number and 
the relative RMS wall-temperature fluctuation. 
Calculated values are compared to experimental 
values in the following sections. 

The numerical solution yielded results in 
terms of a Stanton number (Nk,) based on the 
temperature difference 8, -- tli rather than the 
more useful Stanton number (NJ based on the 
difference (6) - 8,. In general, a numerical 
integration is required to obtain the ratio 
N,,IN;, = ((0) - &,,)/(& - 8,); however, a prac- 
tical approximation can be obtained ifa logarith- 
mic temperature distribution is assumed for the 
turbulent core and the value 8, - Bi given by 
equation (4) is employed to give 19~ at S&. It is 
thus possible to show that [9] 

Ns, = 
N$, 

1 + xN$, 
. where 

0.99u; 
~1 = -$ (ln2Z - 3 In 2 + 3.5) -- ____ 

K 

(In 2 - 1.5); (27) 

Z = R+/6:. 

For N,, greater than 9000, equation (27) can 
be represented in terms of N,, as c1 = (- 39.8 
+ 4.1854 In NRe) In N,, + 21.04. 

Wall temperature f luctuations 
Extensive wall temperature fluctuation meas- 

urements have been made [9] and reported 
elsewhere [lo]. Mean periods were determined 
by autocorrelation and found to correspond 



FIG. 4. Measured wall-temperature fluctuations from a pair of sensors in a Pyrex tube for Tetralin at NR~ = 3(10)4. 
The horizontal time scale is 160 ms per major division. The period T indicated is that found from autocorrela- 

tion of the signal. 

H.M. [facing page 73921 
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well to theoretical values of the mean period. 
Wall temperature fluctuation magnitudes may 
be compared to the calculations outlined above. 

Calculated wall-temperature wave forms for 
various assumed values of the minimum thick- 
ness, 6,, are plotted in Fig. 3 for Tetrahn in a 

f/T 

FIG. 3. Numerically computed wail-temperature oscilfa- 
tions for Tetralin in a Pyrex tube at NRp = 5(10)4. 

Pyrex tube at a Reynolds number of 5(10)4. 
This may be compared to Fig. 4 which is an 
oscilloscope trace of wall temperature fluctua- 
tions from a pair of platinum-~~ wall-tempera- 
ture sensors [9% lo] in a Pyrex tube for Tetralin 
at a Reynolds number of 3(10)4 [9, lo]. The 
period, T, indicated in Fig. 4 is that determined 
from autocorrelation. Of course, it must be 

! a:=0 
I 

FIG. 5. RMS wall-temperature fluctuations for Tetralin 
in Pyrex tubes for comparison with calculated values for 

various minimum subtayer thicknesses. 

remembered that T as determined from the 
model is only an average of a statistical quantity. 

Figure 5 compares experimental relative 
RMS wall temperature fluctuations for Tetralin 
in Pyrex tubes [9, lo] to those computed for 
various assumed minimum thickness values. 

FIG. 6. Numerically computed local Stanton number as a 
function of Reynolds and Prandtl number compared to 
Deisslerb correlation for Prandd numbers greater than 

unity. 

Good agreement is obtained for 8: = 1.5, which 
is essentially the value found ex~rimentally by 
Popovich and Hummel [4,5], and it was also 
found that this value gave the best heat-transfer 
coefficients. 

Heat-transfer coeflicients 
Computed values of the Stanton number for 

Prandtl numbers greater than one are plotted 
in Fig 6 for various Reynolds numbers and a 
dimensionless minimum thickness of 1.5. Com- 
parison to Deissler’s correlation [16] is made 
and agreement within the estimated accuracy of 
the empirical correlation is obtained to Prandtl 
numbers of one to two hundred for Reynolds 
numbers of 104 or greater. In the transition 
region N,, < 104, some discrepancy is probably 
introduced by use of sublayer solutions strictly 
applicable to parallel plate, not tube, geometries 
[9]. In the case of very high Prandtl number 
fluids, the deviation between prediction and the 
Deissler correlation is significant. For N, = 1000 
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and 3000 the predicted values of N, are 20 and 
35 per cent low respectively. 

For Prandtl numbers less than one, liquid 
metals, two empirical correlations have attained 
rather wide acceptance. A number of heat- 
transfer texts (e.g. [27, 281) give an empirical 
equation due to Lubarsky and Kaufman [29] 

N,, = 0.625 (NRe Np,)0’4, (28) 

while the Chemical Engineers Handbook [30] 
recommends [ 3 l] 

N,, = 5.0 + 0.016 (NRe N,,)0.8 (29) 

which is of the Martenelli [32]-Lyon [33] form, 
but with empirical coefficients. Both equations 
(27) and (28) are plotted in Fig. 7. It should be 

--- N,,,,=06251Npp~ 

----N,, =5o+oo16hv&P~ 

- Theory 

lalng. 10’C,Np, -0 027 

1 bl No,XO'C, ~,,=0.0066 

I I I I I I I I 

50 100 200 500 ,000 2000 5000 104 2llOP 5(101@ 

Peciet number. m. I, N ..N,, 

FIG. 7. Numerically computed local Nusselt numbers for 
mercury and sodium in stainless steel tubes are compared 
to empirical correlations. The curve for the mercury 
calculation should be increased by about 25 per cent as 
required by equation (8). The data correlations are from 

[29] and [31]. 

noted that the experimental data upon which 
these correlations are based deviated + 25 per 
cent from their mean. 

The results of numerical calculations for 
Na at 500°F and Hg at 50°F flowing in stainless 
steel tubes are also plotted in Fig. 7. The Prandtl 
numbers were O-0066 and 0.027 respectively. 
The position of the curve from the Hg calculation 
should be raised by approximately 25 per cent 

as required by equation (8) because of the effect 
of turbulent transport in the region beyond the 
edge of the fluid dynamic boundary layer. The 
simp!e periodic boundary layer model is not 
really adequate for treatment of heat transfer 
of the intermediate Prandtl number fluids 
(0.01 Y N,, 7 O-2). The computed heat-transfer 
coefficients for the Na case are in reasonable 
agreement correlations and average about 25 
per cent high. Agreement is also good at low 
PC&t numbers which is rather surprising in 
light of the arguments of the preceding sections. 
Rather large wall-temperature lluctuations 
should be produced by the sublayer growth and 
decay. The relative values were calculated to be 
10 and 17 per cent for the Na and Hg respectively. 
As a result, the computations indicate a de- 
pendence on Prandtl number of the N,, vs 
PC&t number relationship. This may be a real 
effect, which should be tested by careful experi- 
ments, and may in fact explain some of what has 
previously appeared to be scatter in the data. 

SUMMARY AND CONCLUSIONS 

The simple model of the periodically growing 
and decaying turbulent boundary layer was 
found to predict fully-developed turbulent 
heat-transfer relationships in agreement with 
previously presented correlations over a wide 
range of conditions. Turbulent-flow heat-trans- 
fer rates are calculated by use of relationships 
obtained by solution to the one-dimensional 
heat conduction equation. Processes in the 
turbulent core are assumed to be describable by 
simple mixing length theory. The boundary 
layer growth periods are obtained from fluid 
dynamic considerations, and the Prandtl friction 
factor law is assumed to apply. Since the fluid 
dynamic considerations supply a critical para- 
meter to the model, the approach described is 
really a fluid-heat transfer analogy in a some- 
what unconventional sense. 

For PrandtI numbers greater than about 0.7 
and less than 200, and Reynolds numbers 
greater than 5000, the predictions of the periodic 
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sublayer model arc in practical agreement with 
the calculations of Deissler [16] and Kays [34]. 
A significant discrepancy between prediction 
and experiment is noted for the very high Prandtl 
number (really high Schmidt number) fluids. 
This discrepancy is likely the result of treating 
the region from 0 < y c 6, as laminar and 
neglecting the minute, but still significant eddy 
diffusion very close to the wall. 

Agreement between calculation and experi- 
ment for the very low Prandtl number fluids 
is obtained by use of a time averaged tempera- 
ture profile in the turbulent core which is 
matched to the assumed constant temperature 
of the growing thermal boundary layer at the 
maximum growth thickness of the fluid bound- 
ary layer. The low Prandtl number calculations 
were not intended to be of a predictive nature 
and are presented to show that in this case 
reasonable agreement between calculation and 
observation could be obtained by use of plausible 
assumptions. 

The major advantages of the approach dis- 
cussed for computation of turbulent heat trans- 
fer here is the straightforward nature of the 
calculations which employ a simple, heuristically 
attractive model of the sublayer. The only 
experimentally undefined parameter needed 
is the mean, minimum decay thickness of the 
sublayer, and the value of 1.5 in law of the wall 
units employed in these calculations was found 
to be consistent with the values obtained by 
measurement of the wall temperature fluctua- 
tions during turbulent heat transfer [ 10,ll J. 
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TRANSFERT DE CHALEUR TURBULENT ET SOUS-COUCHE VISQUEUSE 
PERIODIQUE 

RCsumb-On presente des calculs de transfert thermique bases sur le modtle de sous-couche visqueuse 
fluctuante d’un Ccoulement turbulent qui comprennent deux criteres cependant negligeables de situation 
d’ecoulement reelle, a savoir que les fluctuations de la sous-couche imposent des fluctuations de tem- 
perature par&ale et qu’en moyenne la sous-couche ne diminue pas completement a la paroi mais qu’il 
existe plutot une epaisseur maximale de penetration de la turbulence. Les distributions de temperature 
resultantes et les coefficients de transfert thermique sont en accord avec les formules empiriques basees 
sur les resultats experimentaux pour des nombres de Prandtl superieur a un. Le transfert thermique pour 
des metaux liquides est aussi considere (nombre de Prandtl bien inferieur a un) et les coefficients de transfert 
thermique calcules sont de 25 a 50”,/, superieurs a ceux des formules empiriques publiees. Ces calculs 
montrent que pour les metauu liquides le nombre de Nusselt n’est pas une fonction a valeur unique du 

nombre de P&let. 

TURBULENTE WARMEUBERTRAGUNG UND DIE PERIODISCHE VISKOSE 
UNTERSCHICHT 

Zusammenfassung-Mit dem Model1 der “Schwankungen der viskosen Unterschicht” wurden WPr- 
meiibergangsberechnungen bei turbulenter Striimung durchgefiihrt, die zwei wesentliche, aber friiher 
vernachllssigte Merkmale der tatslchlichen Strijmungssituation berticksichtigen, nlmlich: da8 Schwan- 
kungen der Unterschicht zu Schwankungen der Wandtemperatur fuhren und daB im Durchschnitt die 
Unterschicht zur Wand hin nicht vollstLndig verschwindet, sondern daD vielmehr eine minimale Turbulenz- 
Eindring-Dicke existiert. Die resultierenden Temperaturverteilungen und die Warmeiibergangskoeffizien- 
ten stimmen mit emnirischen Korrelationen der experimentellen Daten fiir Prandtl-Zahlen griisser eins 
tiberein. WIrmeiibergang bei Fliissigmetallen (Prandtl-Zahlen wesentlich kleiner als eins) wurde ebenfalls 
untersucht, die berechneten Warmetibergangskoeffrzienten liegen dabei urn 25 bis 50”/, hiiher als ver- 
Bffentlichte exuerimentelle Werte. Die Berechnungen zeigen, dass die Nusselt-Zahl fur Fliissigmetalle 

keine eindeutige Function der Peclet-Zahl ist 

AHeoTal~a~-IIpr~no~nT~n pacseThr Terr~oofiMeua u;r ocnone ,toaenu ~~pfi~-.X~T~oro TeqeHMR 
C Il)VIbCHp)‘IoIQI%M BfI3KLIM IIOnCnOeM C )W?TOM nl3)‘X r;yII[eCTBeHHbIX, SO 3TOrO IIpeHeCipeI%‘MbIX 
OCOt%HHOCTeti PeaJIbHOrO TeYeHMH, a RMeHHO : (1) @IyJ~TyaI[Im IlO;[CJIOJI HRli:Ia:WBaJOTCJ~ HR 

@,rpTyaqElll TeMIIepaT~pbI CTeHKH II (2) H CpegHeM IlO,~CjIOti IIOjIHOCTbM He :I:lTyXaeT I36nHEZI 

CTeHIEII, a CIEOPW Cy’qeCTByeT MaI<CI<MaJIbHWI TOnqPIHk1 IlpOH&lKHOBeHl=I TSpC,j-ineKTHOCTIf. 

nOnjWHHbIe IIpOIjkW TeMIIepaT)‘~lhI A KO:3@fPl4I~IleHTbI Tt’IIJIOO6MeHa COI-JZAC)‘IOTCJI C 

31C(‘~ePLIMeIITa~bHhIMll AaHHbIMll I,~“1 ‘4HCdaX &,aHnT;rJl %OnbIm eHMHHqb1. PaCCMoTpeH 

PacqeTubre anaqermn IEOFI@@H~PI~HTUIS TennooSMena aa 2%509;, itOnbIIIe Orrp6.7InJiOBaHHbIX B 

nHTepaTyf)e 3I<C”e,,IIMeHTaJIbHbIX ;[BHHbIX. P+YETbI IlOlia3bIBa”3T, rITO n,JIR H(IIAKHX MeTXIjIOB 

qE1CJIO I~~)‘CCWIbTa HeORHO3HaYHO 3aBMCLlT OT riLICJIa ~WLVK’. 


